Extensions 1→N→G→Q→1 with N=C32 and Q=CSU2(𝔽3)

Direct product G=N×Q with N=C32 and Q=CSU2(𝔽3)
dρLabelID
C32×CSU2(𝔽3)144C3^2xCSU(2,3)432,613

Semidirect products G=N:Q with N=C32 and Q=CSU2(𝔽3)
extensionφ:Q→Aut NdρLabelID
C321CSU2(𝔽3) = C32⋊CSU2(𝔽3)φ: CSU2(𝔽3)/Q8S3 ⊆ Aut C3214412-C3^2:1CSU(2,3)432,247
C322CSU2(𝔽3) = C322CSU2(𝔽3)φ: CSU2(𝔽3)/Q8S3 ⊆ Aut C321446C3^2:2CSU(2,3)432,257
C323CSU2(𝔽3) = C3×C6.5S4φ: CSU2(𝔽3)/SL2(𝔽3)C2 ⊆ Aut C32484C3^2:3CSU(2,3)432,616
C324CSU2(𝔽3) = C324CSU2(𝔽3)φ: CSU2(𝔽3)/SL2(𝔽3)C2 ⊆ Aut C32144C3^2:4CSU(2,3)432,619

Non-split extensions G=N.Q with N=C32 and Q=CSU2(𝔽3)
extensionφ:Q→Aut NdρLabelID
C32.CSU2(𝔽3) = C32.CSU2(𝔽3)φ: CSU2(𝔽3)/Q8S3 ⊆ Aut C3214412-C3^2.CSU(2,3)432,243
C32.2CSU2(𝔽3) = C3×Q8.D9φ: CSU2(𝔽3)/SL2(𝔽3)C2 ⊆ Aut C321444C3^2.2CSU(2,3)432,244
C32.3CSU2(𝔽3) = C32.3CSU2(𝔽3)φ: CSU2(𝔽3)/SL2(𝔽3)C2 ⊆ Aut C32432C3^2.3CSU(2,3)432,255

׿
×
𝔽