Extensions 1→N→G→Q→1 with N=C32 and Q=CSU2(F3)

Direct product G=NxQ with N=C32 and Q=CSU2(F3)
dρLabelID
C32xCSU2(F3)144C3^2xCSU(2,3)432,613

Semidirect products G=N:Q with N=C32 and Q=CSU2(F3)
extensionφ:Q→Aut NdρLabelID
C32:1CSU2(F3) = C32:CSU2(F3)φ: CSU2(F3)/Q8S3 ⊆ Aut C3214412-C3^2:1CSU(2,3)432,247
C32:2CSU2(F3) = C32:2CSU2(F3)φ: CSU2(F3)/Q8S3 ⊆ Aut C321446C3^2:2CSU(2,3)432,257
C32:3CSU2(F3) = C3xC6.5S4φ: CSU2(F3)/SL2(F3)C2 ⊆ Aut C32484C3^2:3CSU(2,3)432,616
C32:4CSU2(F3) = C32:4CSU2(F3)φ: CSU2(F3)/SL2(F3)C2 ⊆ Aut C32144C3^2:4CSU(2,3)432,619

Non-split extensions G=N.Q with N=C32 and Q=CSU2(F3)
extensionφ:Q→Aut NdρLabelID
C32.CSU2(F3) = C32.CSU2(F3)φ: CSU2(F3)/Q8S3 ⊆ Aut C3214412-C3^2.CSU(2,3)432,243
C32.2CSU2(F3) = C3xQ8.D9φ: CSU2(F3)/SL2(F3)C2 ⊆ Aut C321444C3^2.2CSU(2,3)432,244
C32.3CSU2(F3) = C32.3CSU2(F3)φ: CSU2(F3)/SL2(F3)C2 ⊆ Aut C32432C3^2.3CSU(2,3)432,255

׿
x
:
Z
F
o
wr
Q
<